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Effects of Shear Flow on Long-Ranged Correlations, 
Spinodal Demixing Kinetics, and the Location of the 
Critical Point and Cloud Point ~ 

J. K. G. Dhont 2 

A derivation of an expression for the shear rate-dependent Ornstein Zernike 
structure factor is discussed, together with the resulting anomalous behavior of 
the turbidity. The predicted scaling behavior of the turbidity, comprising the 
effect of both temperature and shear rate, is in good agreement with experiments 
on binary fluids. Then initial spinodal decomposition is discussed, and an 
explicit expression for the time- and shear rate-dependent effective diffusion 
coefficient is derived, which shows all the typical characteristics of anisotropic 
light scattering patterns that are observed experimentally for binary fluids. Next 
it is shown that the spinodal is shifted linearly with the 1bare) Peeler number for 
not too large Peeler numbers, whereas the cloud point is singularly displaced 
into the unstable region due to a shear flow. This is in agreement with an 
experiment on a two-polymer/solvent mixture and binary fluid mixtures. It is 
argued that light scattering is useless to determine the location of the spinodal 
of a sheared system. 
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i .  I N T R O D U C T I O N  

T h e o r e t i c a l  p red ic t ions  c o n c e r n i n g  the effect of  shear  flow on (i l  long-  

r anged  cr i t ical  co r re l a t ions ,  (ii) ini t ial  sp inoda l  d e c o m p o s i t i o n  kinetics,  and 

(iii) the l oca t i on  of  the  sp inoda l  and c l o u d - p o i n t  curve  are  discussed and 

c o m p a r e d  to expe r imen t s .  T h e  fo rmal  de r iva t i on  of  these pred ic t ions  are  

not  g iven  here  in full ex ten t ;  I discuss on ly  briefly the lines a long  which 
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these formal derivations proceed. The starting point of these calculations 
is the Smoluchowski equation, which is an equation of motion for the 
probability density function Px(rl, r2.., rx:  t) of the position coordinates 
.[rj ..... rx} of the N Brownian particles [1].  Only spherically symmetrical 
Brownian particles are considered, for which orientational degrees of 
freedom need not be considered, so that position coordinates is the 
relevant set of microscopic variables. Although this approach is intended to 
describe phenomena in colloidal systems, a number of critical phenomena 
may be generic, and we compare most of the theoretical predictions with 
results on molecular systems. In most cases, experimental data on colloidal 
systems are not available yet. Without shear flow, the critical behavior of 
colloidal and atomic/molecular systems is identical, since for both kinds of 
systems the equilibrium probability density function for the phase space 
coordinates is identical, being equal to the Boltzmann exponent of the 
Hamiltonian. Diffusion processes, which determine the effect of shear flow, 
may also share similar properties for both systems, in which case the con- 
clusions given in tile present paper also apply to atomic/molecular systems. 
How far relevant dynamical features of colloidal and atomic/molecular 
systems compare is difficult to assess. 

Being an equation of motion for the probability density function of 
phase space coordinates, the Smoluchowski equation plays the same role in 
the statistical mechanics of colloidal systems as the Liouville equation for 
atomic/molecular systems. The present approach may thus be considered 
as a "Liouville equation approach" for colloidal systems. 

With the neglect of hydrodynamic interactions between the Brownian 
particles, tile Smoluchowski equation reads 

p ,,\, N 

~'t = ~ Vl. [Do{V,P.v + #(PxVl@l } - P x F "  r,] 
i = l  

(1) 

Here q5 is tile total potential energy of the assembly of Brownian particles 
and F is the velocity gradient tensor. The shear flow considered here is a 
flow in the x direction, with the gradient in the y direction. The velocity 
gradient tensor for this flow is 

F=~', 0 

0 

with )', the shear-rate. 
My intention here is to describe how to go about obtaining explicit 

results for the effect of shear flow on 
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(i) critical correlations, 

(ii) initial spinodal decomposition kinetics, and 

{iii) the location of the spinodal and cloud-point curve. 
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2. LONG-RANGED CRITICAL CORRELATIONS [2] 

The Smoluchowski equation can be integrated over all except two 
position coordinates to obtain an equation of motion for the pair-correla- 
tion function g(R, t I ~), with R the distance between two particles, 

P-z° = 2DoV . [Vg + fig(Vl e -  F,,u) ] - V. (gF .  R) 
?t 

(2) 

where V is the pair-interaction potential, assumed to be pairwise additive. 
Furthermore, Fred is the indirect force between two particles mediated via 
the other particles, which force is an integral containing the triplet correla- 
tion function. The equation of motion is closed, by means of an improved 
version of the superposition approximation for the triplet-correlation func- 
tion. The point here is that the usual superposition approximation does not 
yield a diverging correlation length at the critical point. A natural improve- 
ment of the superposition approximation resolves this inconsistency [2, 3 ]. 
The asymptotic solution of the stationary nonlinear equation of motion for 
large distance is obtained by linearization with respect to g around g -  1, 
since g becomes equal to I at infinity. The linearization limits the further 
discussion to the mean-field region [2]. The resulting linear equation can 
be solved with Fourier transformation. Scaling the wave-vector k with 
respect to the correlation length ~ (at the particular temperature and 
density under consideration for the system without shear flow), 

K----k~ (3) 

yields the following expression for the relative structure-factor distortion 
[',', is the shear rate, S(K I')) is the structure factor, and seq(K} is the 
equilibrium structure factor], 

S(K I " ) ) -  S~q(K) 

s t :q (K) -  l 

{ 1 d X ( K , _ _ K ~ + X 2 ) ( K ~ _ X Z ) e x p  TK,( J 
),Ki . 

(4) 
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where Kj is tlle .jth component of K, and, 

F(K I X ) - ( X - K 2 ) ( K ' - - K ~ ) ( I  + K 2 - K ~ )  

+~(X3-K~)( I+2Ke-2K~)+~(XS-K~) (5) 

The + ( -  ) sign in the upper integration limit in Eq. (4) is to be used for 
),K~ > 0  (<0) .  The parameter ,;. is a dimensionless group that describes the 
effect of both temperature (via the correlation length) and shear rate on the 
distortion, 

Pel~(; ' ) 
2 -  (6) 

where Pe '~- ;;R~,/2D,) is the Peclet number. Do is the Stokes-Einstein diffu- 
sion coefficient, f l =  I/k~}T (kE3 is Boltzmann's constant and T is the tem- 
perature), Rv is the range of the pair-interaction potential, and Z is a well- 
behaved function of the density and temperature which is related to the 
Cahn-Hil ] iard free-energy square-gradient coefficient. Note that ). :x: ;~4, 
so that, close to the critical point, where the correlation length ~ is large, 
a small shear rate ") is sufficient to have a significant effect. Actually, in the 
derivation of the above result it is assumed that Pe°,~ 1, but since ~ is so 
large, there is still a large effect of the shear flow for these small Peclet 
numbers. The transition from weak to strong shear flow occurs at ). ~ 1. 

Since for 2 = 0  we have, S(K I ) ~ ) = s c q ( K ) ,  and ). occurs as a product 
with K~, it follows that 

S ( K I ; : ) = s ~ q ( K ) ,  for K~=O (7) 

There is no effect of the shear flow on density correlations in those direc- 
tions where K, =0.  In fact, numerical results obtained from the above 

S I t~., ),=0 " )~=10 °1 "' ;',=10 "3 

ii\ //' 

) k3=0 
kl 

Fig. I. The structure fiictor as a function of K~ and K, for K~ =0,  for ) .=0,  10, 
and 1000. 



Effects of Shear Flow on Long-Ranged Correlations 116l 

-2 

-4 

-6 

I I f 

I I I I 
200 400 600 800 1000 

Fig. 2. The theoretical turbidity scaling function [solid 
ct, rve) with data points for a mixture of aniline and 
cyclohexane taken from Ref. 4 and 5. The inset shows a 
blowup for ) .<  20. D:lta points are for , :=92.~ ~ ( l. 
288.~ i (i ; ) a n d  903.s i ( ,) .  

results show that correlations are already severely disrupted in all other 
directions for very small shear rates (that is, small Pe°). This is illustrated 
in Fig. 1, where S(K I ;~) is plotted as a function of K~ and K 2, with K3=O, 
for three values of the parameter ). (). = 0 corresponds to the equilibrium 
structure factor). Clearly, in directions perpendicular to the flow, that is, in 
directions where Kj #= 0, the disruption of correlations is almost complete, 
whereas in the flow direction the structure is unaffected. Actually, the 
correlation length along the flow direction can be shown to depend on the 
shear rate through the Peclet number Pe n in a regular fashion, being 
related to the pair-correlation function for distances smaller than the range 
Rv of the pair-interaction potential V [2].  These distortion characteristics 
are in accordance with experimental findings for binary fluids [4]. 

The structure-factor distortion is observed experimentally in an 
integrated form through measurements of the turbidity (and, for example, 
dichroism and viscosity). On the basis of Eq.(4j  it can be shown [2] 
that the turbidity ~ is only a function of )., which dimensionless number 
describes then the effect of both temperature (through the correlation 
length) and shear rate, 

r ~ T().) (8) 
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The "scaling" or "master" function T is an integral over the structure-factor 
distortion and is plotted in Fig. 2, together with experimental data on a 
binary fluid mixture [4, 5]. Three sets of data points are shown, referring to 
measurements as a function of temperature for three different shear rates. 
There are two unknown proportionality constants between the measured 
quantities, on the one hand, and the scaling function and its argument 2, 
on the other hand. These two proportionality constants are determined by 
fitting the set of data taken at the shear rate of 903s-  J to the theoretical 
scaling function. Data taken at other shear rates are then rescaled with the 
same proportionality constants and plotted in the scaling form without any 
further adjustable parameter. As can be seen, the predicted 2 ~ ~ 4  scaling 
is an accordance with these experiments. 

3. INITIAL SPINODAL D E C O M P O S I T I O N  KINETICS [6] 

To describe the decomposition kinetics, an equation of motion for the 
macroscopic density p(r; t [ "2) is required. Such an equation of motion is 
obtained from the Smoluchowski equation by integration over all except 
one position coordinate. This equation reads, 

? t = D o V  • Vp+~p d r ' [ V V ( l r - r ' l ) ] p l r ' : t l T j g ( r , r ' : t l ' ) )  - V - ( p F r )  

(9) 

The pair-correlation function g must be expressed in terms of the density 
to obtain a closed equation of motion. To describe the initial decomposi- 
tion kinetics, we can write the density as 

p(r: t [ "))=~+6p(r:t[ ~:) (10) 

where /5 = N/V is the mean density, and 6p(r; t I ~;) is the change in the 
density, which is assumed to be small in comparison to ~. Assuming, again, 
very small Peclet numbers, the distortion o fg  for I r - r ' l  ~< Rv (with Rv the 
range of the pair-interaction potential V) in Eq. (9) is negligible and g may 
be replaced by the equilibrium pair-correlation function g e q ( [ r  - -  r'[). The 
effect of the shear flow is large, even for the small Peclet numbers Pe °, since 
very large wave-vector density variations are unstable [6-1. The change 
of the equilibrium pair-correlation function is linear in the change in 
the density in the initial stages. Assuming that this change is sinusoidal for 
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low-amplitude and long-wavelength sinusoidal density variations, the 
following closure relation is obtained: 

~g(r,r'; t I ";)=g(r,  r ' ; t l  ~ ) -g¢ '4 ( l r -  r'l) 

-dqCq(lr-r ' l )6p(~' , t l '2)  for [ r - r ' l  ~< Rv 11) 

where ~= ½(r + r'), and g~q(Ir- r'l) (with I r -  r'l ~< Rv), is the pair-correla- 
tion function right after the temperature quench into the unstable region of 
the phase diagram, before phase separation is initiated. 

The above closure relation, linearization, and Fourier transformation 
yields the following equation of motion for the Fourier transform of the 
change of the density 6p(k, t [ ~) 

~ - ' ~ k j  6p(k; t l ",")= -D(k)k2  6p(k: t l ";'l (12) 

with the "effective diffusion coefficient" given by 

D(k} - D,, [] ~p H(t3} + []k2X([~} + O((kRv) 4 } 1131 

where /7 is the osmotic pressure and Z" is the same well-behaved function 
that appears in the dimensionless number ,;., Eq. (6). When Pe ° is not a 
small number, the effective diffusion coefficient becomes shear rate 
dependent. For zero shear this equation of motion is nothing but the 
(linearized) Cahn-Hilliard equation of motion, which is thus rederived 
from microscopic considerations. In case no shear flow is applied, the effec- 
tive diffusion coefficient is zero for zero wave-vector k on the spinodal 
curve and is negative for a certain finite k-range around k = 0 below the 
spinodal. The equation of motion 112)is valid only in the unstable region. 

The solution of Eq. (12) is 

6p(k;t l  );) ~ exp.{- D~rr(k: t I '2)k:t} 114) 

where we introduced a time- and shear rate-dependent effective diffusion 
coefficient, which is related to the zero-shear effective diffusion coeficient as 

1 ;,-: + -,,k,, ~ ~ k~ +.~.-2 + k 2 
~ + x - + k ~ )  k2 (15) D ~ f r ( k ; t l ~ ) = ~ f k , .  d xD(x / k i  3 

Note that 

D~rr(k;t];,,)=D(k) for k ~ = 0  116) 

,";41~ 15 f,-II 
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so that no effect of the shear flow on the decomposi t ion kinetics is pre- 
dicted in directions where k , =  0. Fur thermore,  tile effective diffusion coef- 
ficient depends on the shear rate and time only through their product  ;~t. 
Both these observat ions have been made experimentally for binary fluid 
mixture [7] .  Numerical  results for the effective diffusion coefficient can be 
obtained with a third virial approximat ion  for the (short ranged) behavior  

---- 14:o 9 - - ~  

0O4 0 o 

~ " o 
~ .  .o o4 

• .0 04 k l  A-'- ~ .0 04 

k 3 = O  k 2 = O  

# 0 
Fig. 3. Minus the effective diffusion coefficient x (kA)Z 
as a function of (kt,k,_) on the left and {ka,k~) on the 
right. The pair-correlation function is a third virial 
approximation for a square well with a width ._4, super- 
imposed on a hard-core repulsion. Bottom: Experi- 
mental scattering pattcrns for a demixing binary fluid 
mixture, taken from Ref. 7. 
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of the equilibrium pair-correlation function, to calculate both H and X. 
The pair-interaction potential is chosen as an attractive square well, super- 
imposed on a hard-core repulsion. The typical predicted anisotropy of 
(raDius) the effective diffusion coefficient multiplied with k-" is given in 
Fig. 3. In the (k~, k,) plane there is an ellipsoidal-like distortion with the 
long axis of the ellipsoid rotated, whereas in the (k~,k3) plane no such 
rotation is predicted. This is precisely what is observed experinaentally for 
binary fluids, including the diminishing of the effective diffusion coefficient 
(c.q. the scattered intensity) along the long axis of the ellipsoid in the 
(k t , k 2) plane (the coordinate system used in Ref. 7 must be transformed to 
the one we used here). The experimentally observed scattering patterns are 
given in Fig. 3 (bottom). These patterns are to be compared with the 
theoretical patterns in the two columns above. 

lmaeda et al. [8] derive an equation of motion similar to Eq. (12) for 
binary fluids, using an expression for the free energy [the thermodynamic 
potential q~ in their Eq. (2.6)] which is unaffected by the shear flow. This 
is equivalent to our neglect of the shear rate dependence of the pair- 
correlation function in the closure relation (11) (as it turns out in the 
following section, it is just that shear rate dependence that describes 
the shift of the spinodal as a function of the shear rate). Due to the 
presence of an inhomogeneous term in their equation of motion, the 
solution differs from our solution (14) and contains a time integral. The 
quantity which is denoted f(k, t) in Ref. 8 is precisely our effective diffusion 
coefficient in Eq. (15), apart from a trivial prefactor. Although different in 
details, the predictions given here for colloidal systems are in overall 
agreement with those made for binary fluids in Ref. 8. 

4. D I S P L A C E M E N T  OF THE S P I N O D A L  A N D  THE 
C L O U D  P O I N T  [-6] 

In the previous sections we have made the restriction that Pe°~ 1. 
This is done so that the pair-correlation function g(r[f)  in the expression, 

I 1 dV(r) 
D(kl'))=Do l -~[ l~ fdrr  d---7-(~.~)2 

( d~q(r I f) sin{~ _k -_r}l ] s in{k. r}+t7  ~ 7 (17) 
x 2g~q(rlf) k.-----~- dff ~ k . r  J ]  

can be set equal to the equilibrium pair-correlation function g¢"(r): 

pe°~l~g(rlf),~g¢q(r) for r~<Rv 
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with V(r) the pair potential. The shear rate-dependent effective diffusion 
coefficient (17) then reduces to the shear rate-independent effective diffu- 
sion coefficient (13). For the calculation of the displacement, however, the 
shear-rate dependence in (17) is essential, as the location of the spinodal is 
given by 

D~"(k = 0 l ~ ) =  0 (18) 

This implicit relation for the temperature and the density bounds the 
unstable region. Actually, this condition is a stability criterion for concen- 
tration variations of an infinitesimally low amplitude. In a real system there 
are always finite-amplitude fluctuations, so that the system demixes as if it 
were unstable before the true spinodal is reached. Without shear flow, the 
criterion given by Eq. (18) is the usual thermodynamic definition of the 
spinodal. 

For r ~< Rv, the distortion of the pair-correlation function is regular in 
Pe", that is, 

g(rl'f')=g¢q(r)+g(l~(r)Pe"+O((Pe")'-) for r~<Rv (19) 

where gql~(r)is an O(1) function. It follows then from Eq. (18) that the 
effective diffusion coefficient is a regular function of Pe °, and in particular, 

DCfr(k = 0  "))= D~n(k =O) + D(X~ Pe(' + O((Pe°) z) {20) 

Tile implicit relation between density and temperature is thus regular in 
Pc", so that the conclusion is that the spinodal shifts linearly with the 
Peclet number for not too large values of Pe". 

The cloud-point curve is defined as the set of temperatures and den- 
sities that bounds the region where the turbidity diverges. This divergence 
is due to the long-ranged character of the pair-correlation function. In 
equilibrium, that is, without shear flow, the critical point is a cloud point. 
Being related to the long-ranged behavior of the pair-correlation function, 
the cloud points are shifted in a singular fashion with Pe". In Section 2, for 
example, we found that the turbidity depends on the dimensionless number 
2, which is infinite, no matter how small the shear rate is, when the correla- 
tion length (in the homogeneous thermalized system before phase separa- 
tion occurred, at the particular temperature and density) is infinite. The 
singular behavior of the pair-correlation function can also be read off the 
equation of motion, given by Eq. (2), for the pair-correlation function, 
without the need to solve that equation [-2, 6]. The conclusion is that the 
cloud-point curve is shifted over a much larger temperature interval than 
the critical point, where the system becomes unstable. 
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Fig. 4. The temperature shift JT(~,I--- T(; ~ = 0 ) -  T(~ ;) 
of the critical point, ,.IT [spinodal~. and of the cloud 
point. ,_IT (cloud point), as a function of the shear 
rate. The system is a mixture of ethylcellulose and 
polystyrene in benzene. Data are taken from Ref. 9. 

This prediction is in accord with experiments on a two-polymer 
solvent mixture [9]. Figure 4 shows the temperature shift, 

AT(?) - T(? = 0) - T(?) (1) 

of the spinodal and the cloud point at the critical composition for that 
mixture. These data clearly show the predicted regular shift of the spinodal 
and the singular shift of the cloud point. A sheared system becomes 
unstable on lowering the temperature in the present case and phase 
separates before it turns very turbid, In the homogeneous state, before 
phase separation occurred, the turbidity becomes infinite for the first time 
on lowering the temperature far into the unstable region. The conclusion is 
that light scattering is useless to detect the location o/" the sp#lodal hi a 
sheared system. What is measured is the cloud point, which has a different 
location in the sheared system than the spinodal. 
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Simi la r  s ingu la r  d isp lacernents  of the c loud  poin t  are found  for b i n a r y  
fluids by Beysens et al. [103 and ,  more  recently,  F u k u h a r a  et al. [ I 13 .  
A l though  the t empe ra tu r e s  at which the tu rb id i ty  diverges are somet imes  
referred to as crit ical  t empera tu res ,  they are c l o u d - p o i n t  t empera tu res ,  
which do not  co inc ide  with the sp inoda l  where  the dens i ty  becomes  
uns table .  The  init ial  shear - ra te  d e p e n d e n c e  of the shift of the c l o u d - p o i n t  
t empe ra tu r e  is found  in Refs. 10 a n d  11 to be descr ibed,  to wi th in  
expe r imen ta l  error ,  by ~ '"- This  could  be connec ted  to the width  of the • N/  : ' .  

m a t h e m a t i c a l  b o u n d a r y  layer  of the sin~ularly~ pe r tu rbed  (Fourier-trans-,_:. 
fo rmed)  S m o l u c h o w s k i  eq u a t i o n ,  which varies with the shear  rate as w"','. 
Such a c o n n e c t i o n  requires  fur ther  s tudy.  

It is no t  obv i o u s  wether  in a sheared system the sp inoda l  or  the c loud  
point  should  be called a crit ical poin t  in the sense that ,  for example ,  
the suscept ib i l i ty  shows a n o m a l o u s  behavior .  It m ay  very well be that  
a n o m a l o u s  behav io r  of different quan t i t i e s  occurs  at different t empera tu res ,  
d e p e n d i n g  on  their  sensi t ivi ty to infini tely ranged  co r re l a t ions  in one,  two, 
or  all three di rect ions .  
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